Popis: |
Calibration of the zero-velocity detection threshold is an essential prerequisite for zero-velocity-aided inertial navigation. However, the literature is lacking a self-contained calibration method, suitable for large-scale use in unprepared environments without map information or pre-deployed infrastructure. In this paper, the calibration of the zero-velocity detection threshold is formulated as a maximum likelihood problem. The likelihood function is approximated using estimation quantities readily available from the FootSLAM algorithm. Thus, we obtain a method for adaptive thresholding that does not require map information, measurements from supplementary sensors, or user input. Experimental evaluations are conducted using data with different gait speeds, sensor placements, and walking trajectories. The proposed calibration method is shown to outperform fixed-threshold zero-velocity detectors and a benchmark using a speed-based threshold classifier. |