Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels
Autor: | Adamovic, Drazen, Kontrec, Ana |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the representation theory of the Bershadsky-Polyakov algebra $\mathcal W_k = \mathcal{W}_k(sl_3,f_{\theta})$. In particular, Zhu algebra of $\mathcal W_k$ is isomorphic to a certain quotient of the Smith algebra, after changing the Virasoro vector. We classify all modules in the category $\mathcal{O}$ for the Bershadsky-Polyakov algebra $\mathcal W_k$ when $k=-5/3, -9/4, -1,0$. In the case $k=0$ we show that the Zhu algebra $A(\mathcal W_k)$ has $2$--dimensional indecomposable modules. Comment: Latex, 33 pages |
Databáze: | arXiv |
Externí odkaz: |