A radial integrability result concerning bounded functions in analytic Besov spaces with applications

Autor: Domínguez, Salvador, Girela, Daniel
Rok vydání: 2019
Předmět:
Zdroj: Results in Mathematics 75, paper no. 67 (2020)
Druh dokumentu: Working Paper
DOI: 10.1007/s00025-020-01194-4
Popis: We prove that for every $p\ge 1$ there exists a bounded function in the analytic Besov space $B^p$ whose derivative is "badly integrable", along every radius. We apply this result to study multipliers and weighted superposition operators acting on the spaces $B^p$.
Databáze: arXiv