A radial integrability result concerning bounded functions in analytic Besov spaces with applications
Autor: | Domínguez, Salvador, Girela, Daniel |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Results in Mathematics 75, paper no. 67 (2020) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00025-020-01194-4 |
Popis: | We prove that for every $p\ge 1$ there exists a bounded function in the analytic Besov space $B^p$ whose derivative is "badly integrable", along every radius. We apply this result to study multipliers and weighted superposition operators acting on the spaces $B^p$. |
Databáze: | arXiv |
Externí odkaz: |