Extreme eigenvalue statistics of $m$-dependent heavy-tailed matrices
Autor: | Basrak, Bojan, Cho, Yeonok, Heiny, Johannes, Jung, Paul |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<\alpha<4$. Our analysis extends results in the previous literature for the corresponding random matrices with independent entries above the diagonal, by allowing for m-dependence between the entries of a given matrix. We prove that the limiting point process of extreme eigenvalues is a Poisson cluster process. Comment: 37 pages, small errors fixed |
Databáze: | arXiv |
Externí odkaz: |