General form of the solutions of some difference equations via Lie symmetry analysis
Autor: | Folly-Gbetoula, Mensah, Göcen, Melih, Güneysu, Miraç |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we obtain exact solutions of the following rational difference equation $ x_{n+1}=\frac{x_{n}x_{n-2}x_{n-4}}{ x_{n-1}x_{n-3}(a_{n}+b_{n}x_{n}x_{n-2}x_{n-4})}, $ where $a_{n}$ and $b_{n}$ are random real sequences, by using the technique of Lie symmetry analysis. Moreover, we discuss the periodic nature and behavior of solutions for some special cases. This work is a generalization of some works by Elsayed and Ibrahim in [E.M.Elsayed, T. F. Ibrahim, { Solutions and periodicity of a rational recursive sequences of order five}, Bulletin of the Malaysian Mathematical Sciences Society 38:1 (2015), 95-112]. Comment: 13,2 |
Databáze: | arXiv |
Externí odkaz: |