Macdonald Polynomials and level two Demazure modules for affine $\mathfrak{sl}_{n+1}$
Autor: | Biswal, Rekha, Chari, Vyjayanthi, Shereen, Peri, Wand, Jeffrey |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define a family of symmetric polynomials $G_{\nu,\lambda}(z_1,\cdots, z_{n+1},q)$ indexed by a pair of dominant integral weights. The polynomial $G_{\nu,0}(z,q)$ is the specialized Macdonald polynomial and we prove that $G_{0,\lambda}(z,q)$ is the graded character of a level two Demazure module associated to the affine Lie algebra $\widehat{\mathfrak{sl}}_{n+1}$. Under suitable conditions on $(\nu,\lambda)$ (which includes the case when $\nu=0$ or $\lambda=0$) we prove that $G_{\nu,\lambda}(z,q)$ is Schur positive and give explicit formulae for them in terms of Macdonald polynomials. Comment: Version 2; many typos corrected and proofs streamlined |
Databáze: | arXiv |
Externí odkaz: |