Undecidability, unit groups, and some totally imaginary infinite extensions of $\mathbb{Q}$
Autor: | Springer, Caleb |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We produce new examples of totally imaginary infinite extensions of $\mathbb{Q}$ which have undecidable first-order theory by generalizing the methods used by Martinez-Ranero, Utreras and Videla for $\mathbb{Q}^{(2)}$. In particular, we use parametrized families of polynomials whose roots are totally real units to apply methods originally developed to prove the undecidability of totally real fields. This proves the undecidability of $\mathbb{Q}^{(d)}_{ab}$ for all $d \geq 2$. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |