Autor: |
Mao, Guo-Shuai, Wen, Chen-Wei |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
The Ramanujan Journal(2021) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s11139-021-00400-3 |
Popis: |
In this paper, we prove two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \begin{align*} \sum_{n=0}^{p-1}\frac{6n+1}{256^n}\binom{2n}n^3&\equiv p(-1)^{(p-1)/2}-p^3E_{p-3}\pmod{p^4}. \end{align*} In fact, this supercongruence is a generalization of a supercongruence of van Hamme. |
Databáze: |
arXiv |
Externí odkaz: |
|