Proof of two supercongruences conjectured by Z.-W. Sun

Autor: Mao, Guo-Shuai, Wen, Chen-Wei
Rok vydání: 2019
Předmět:
Zdroj: The Ramanujan Journal(2021)
Druh dokumentu: Working Paper
DOI: 10.1007/s11139-021-00400-3
Popis: In this paper, we prove two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \begin{align*} \sum_{n=0}^{p-1}\frac{6n+1}{256^n}\binom{2n}n^3&\equiv p(-1)^{(p-1)/2}-p^3E_{p-3}\pmod{p^4}. \end{align*} In fact, this supercongruence is a generalization of a supercongruence of van Hamme.
Databáze: arXiv