Orders generated by character values

Autor: Bächle, Andreas, Sambale, Benjamin
Rok vydání: 2019
Předmět:
Zdroj: Monatsh. Math. 191, 665-678 (2020)
Druh dokumentu: Working Paper
DOI: 10.1007/s00605-019-01324-3
Popis: Let $K:=\mathbb{Q}(G)$ be the number field generated by the complex character values of a finite group $G$. Let $\mathbb{Z}_K$ be the ring of integers of $K$. In this paper we investigate the suborder $\mathbb{Z}[G]$ of $\mathbb{Z}_K$ generated by the character values of $G$. We prove that every prime divisor of the order of the finite abelian group $\mathbb{Z}_K/\mathbb{Z}[G]$ divides $|G|$. Moreover, if $G$ is nilpotent, we show that the exponent of $\mathbb{Z}_K/\mathbb{Z}[G]$ is a proper divisor of $|G|$ unless $G=1$. We conjecture that this holds for arbitrary finite groups $G$.
Comment: 12 pages. To appear in Monatsh. Math
Databáze: arXiv