A note on three-fold branched covers of $S^4$
Autor: | Blair, Ryan, Cahn, Patricia, Kjuchukova, Alexandra, Meier, Jeffrey |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Ann. Inst. Fourier (Grenoble) 74 (2024), no. 2, 849-866 |
Druh dokumentu: | Working Paper |
Popis: | We show that any 4-manifold admitting a $(g;k_1,k_2,0)$-trisection is an irregular 3-fold cover of the 4-sphere whose branching set is a surface in $S^4$, smoothly embedded except for one singular point which is the cone on a link. A 4-manifold admits such a trisection if and only if it has a handle decomposition with no 1-handles; it is conjectured that all simply-connected 4-manifolds have this property. Comment: Generalized main theorem. 11 pages, 5 figures, no footnotes |
Databáze: | arXiv |
Externí odkaz: |