Quasi-Assouad dimensions for random measures supported on $[0,1]^d$
Autor: | Shen, Wanchun |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce a probability distribution on $\mathcal{P}([0,1]^d)$, the space of all Borel probability measures on $[0,1]^d$. Under this distribution, almost all measures are shown to have infinite upper quasi-Assouad dimension and zero lower quasi-Assouad dimension (hence the upper and lower Assouad dimensions are almost surely infinite or zero). We also indicate how the results extend to other Assouad-like dimensions. |
Databáze: | arXiv |
Externí odkaz: |