On Huisman's conjectures about unramified real curves
Autor: | Kummer, Mario, Manevich, Dimitri |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1515/advgeom-2021-0032 |
Popis: | Let $X \subset \mathbb{P}^{n}$ be an unramified real curve with $X(\mathbb{R}) \neq \emptyset$. If $n \geq 3$ is odd, Huisman conjectures that $X$ is an $M$-curve and that every branch of $X(\mathbb{R})$ is a pseudo-line. If $n \geq 4$ is even, he conjectures that $X$ is a rational normal curve or a twisted form of a such. We disprove the first conjecture by giving a family of counterexamples. We remark that the second conjecture follows for generic curves of odd degree from the formula enumerating the number of complex inflection points. Comment: 9 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |