Human-In-The-Loop Learning of Qualitative Preference Models

Autor: Allen, Joseph, Moussa, Ahmed, Liu, Xudong
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: In this work, we present a novel human-in-the-loop framework to help the human user understand the decision making process that involves choosing preferred options. We focus on qualitative preference models over alternatives from combinatorial domains. This framework is interactive: the user provides her behavioral data to the framework, and the framework explains the learned model to the user. It is iterative: the framework collects feedback on the learned model from the user and tries to improve it accordingly till the user terminates the iteration. In order to communicate the learned preference model to the user, we develop visualization of intuitive and explainable graphic models, such as lexicographic preference trees and forests, and conditional preference networks. To this end, we discuss key aspects of our framework for lexicographic preference models.
Comment: Published in the Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019
Databáze: arXiv