Constraining the $^{12}$C+$^{12}$C astrophysical S-factors with the $^{12}$C+$^{13}$C measurements at very low energies

Autor: Zhang, N. T., Wang, X. Y., Chen, H., Chen, Z. J., Lin, W. P., Xin, W. Y., Xu, S. W., Tudor, D., Chilug, A. I., Stefanescu, I. C., Straticiuc, M., Burducea, I., Ghita, D. G., Margineanu, R., Gomoiu, C., Pantelica, A., Chesneanu, D., Trache, L., Tang, X. D., Bucher, B., Gasques, L. R., Hagino, K., Kubono, S., Li, Y. J., Lin, C. J., Umar, A. S., Xu, Y.
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.physletb.2019.135170
Popis: We use an underground counting lab with an extremely low background to perform an activity measurement for the $^{12}$C+$^{13}$C system with energies down to $E\rm_{c.m.}$=2.323 MeV, at which the $^{12}$C($^{13}$C,$p$)$^{24}$Na cross section is found to be 0.22(7) nb. The $^{12}$C+$^{13}$C fusion cross section is derived with a statistical model calibrated using experimental data. Our new result of the $^{12}$C+$^{13}$C fusion cross section is the first decisive evidence in the carbon isotope systems which rules out the existence of the astrophysical S-factor maximum predicted by the phenomenological hindrance model, while confirming the rising trend of the S-factor towards lower energies predicted by other models, such as CC-M3Y+Rep, DC-TDHF, KNS, SPP and ESW. After normalizing the model predictions with our data, a more reliable upper limit is established for the $^{12}$C+$^{12}$C fusion cross sections at stellar energies.
Databáze: arXiv