Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?

Autor: Petneházi, Gábor, Gáll, József
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: This article applies a long short-term memory recurrent neural network to mortality rate forecasting. The model can be trained jointly on the mortality rate history of different countries, ages, and sexes. The RNN-based method seems to outperform the popular Lee-Carter model.
Databáze: arXiv