Bifurcations of symmetric periodic orbits via Floer homology
Autor: | Kim, Joontae, Kim, Seongchan, Kwon, Myeonggi |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give criteria for the existence of bifurcations of symmetric periodic orbits in reversible Hamiltonian systems in terms of local equivariant Lagrangian Rabinowitz Floer homology. As an example, we consider the family of the direct circular orbits in the rotating Kepler problem and observe bifurcations of torus-type orbits. Our setup is motivated by numerical work of H\'enon on Hill's lunar problem. Comment: 23 pages, 5 figures; v3. minor corrections; To appear in Calculus of Variations and Partial Differential Equations |
Databáze: | arXiv |
Externí odkaz: |