Prime Torsion in the Brauer Group of an Elliptic Curve

Autor: Ure, Charlotte
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We give an algorithm to explicitly determine all elements of the $q$-torsion (for $q$ an odd prime) of the Brauer group of an elliptic curve over any base field of characteristic different from $q$, containing a primitive $q$-th root of unity. These elements of the Brauer group are given as tensor products of symbol algebras over the function field of the elliptic curve. We give sufficient conditions to determine if the Brauer classes that arise are trivial. Using our algorithm, we derive an upper bound on the symbol length of the prime torsion of $\mathrm{Br}(E)/\mathrm{Br}(k)$.
Databáze: arXiv