Autor: |
Lancaster, Kirk, Entekhabi, Mozhgan "Nora" |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We investigate the boundary behavior of the variational solution $f$ of a Dirichlet problem for a prescribed mean curvature equation in a domain $\Omega\subset{\bf R}^{2}$ near a point $\mathcal{O}\in\partial\Omega$ under different assumptions about the curvature of $\partial\Omega$ on each side of $\mathcal{O}.$ We prove that the radial limits at $\mathcal{O}$ of $f$ exist under different assumptions about the Dirichlet boundary data $\phi,$ depending on the curvature properties of $\partial\Omega$ near $\mathcal{O}.$ |
Databáze: |
arXiv |
Externí odkaz: |
|