Lower bounds for the centered Hardy-Littlewood maximal operator on the real line

Autor: Lázaro, F. J. Pérez
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jmaa.2020.123928
Popis: Let $10$ such that for each $f\in L^p(\mathbb{R})$, the centered Hardy-Littlewood maximal operator $M$ on $\mathbb{R}$ satisfies the lower bound $\|Mf\|_{L^p(\mathbb{R})}\ge (1+\varepsilon_p)\|f\|_{L^p(\mathbb{R})}$.
Comment: accepted manuscript
Databáze: arXiv