The Defocusing Energy-critical Klein-Gordon-Hartree Equation
Autor: | Miao, Qianyun, Zheng, Jiqiang |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Colloquium Mathematicum, 140(2015),31-58 |
Druh dokumentu: | Working Paper |
DOI: | 10.4064/cm140-1-4 |
Popis: | In this paper, we study the scattering theory for the defocusing energy-critical Klein-Gordon equation with a cubic convolution $u_{tt}-\Delta u+u+(|x|^{-4}\ast|u|^2)u=0$ in the spatial dimension $d \geq 5$. We utilize the strategy in [S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation. Analysis and PDE., 4 (2011), 405-460.] derived from concentration compactness ideas to show that the proof of the global well-posedness and scattering is reduced to disprove the existence of the soliton-like solution. Employing technique from [B. Pausader, Scattering for the Beam Equation in Low Dimensions. Indiana Univ. Math. J., 59 (2010), 791-822.], we consider a virial-type identity in the direction orthogonal to the momentum vector so as to exclude such solution. Comment: 23 pages. arXiv admin note: substantial text overlap with arXiv:math/0612028 |
Databáze: | arXiv |
Externí odkaz: |