Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer

Autor: Chen, Wenzheng, Gao, Jun, Ling, Huan, Smith, Edward J., Lehtinen, Jaakko, Jacobson, Alec, Fidler, Sanja
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Many machine learning models operate on images, but ignore the fact that images are 2D projections formed by 3D geometry interacting with light, in a process called rendering. Enabling ML models to understand image formation might be key for generalization. However, due to an essential rasterization step involving discrete assignment operations, rendering pipelines are non-differentiable and thus largely inaccessible to gradient-based ML techniques. In this paper, we present {\emph DIB-R}, a differentiable rendering framework which allows gradients to be analytically computed for all pixels in an image. Key to our approach is to view foreground rasterization as a weighted interpolation of local properties and background rasterization as a distance-based aggregation of global geometry. Our approach allows for accurate optimization over vertex positions, colors, normals, light directions and texture coordinates through a variety of lighting models. We showcase our approach in two ML applications: single-image 3D object prediction, and 3D textured object generation, both trained using exclusively using 2D supervision. Our project website is: https://nv-tlabs.github.io/DIB-R/
Comment: Accepted to NeurIPS 2019
Databáze: arXiv