On the rigidity of certain Pham-Brieskorn rings
Autor: | Chitayat, Michael, Daigle, Daniel |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Fix a field $k$ of characteristic zero. If $a_1, ..., a_n$ ($n>2$) are positive integers, the integral domain $B = k[X_1, ..., X_n] / ( X_1^{a_1} + ... + X_n^{a_n} )$ is called a Pham-Brieskorn ring. It is conjectured that if $a_i > 1$ for all $i$ and $a_i=2$ for at most one $i$, then $B$ is rigid. (A ring $B$ is said to be rigid if the only locally nilpotent derivation $D: B \to B$ is the zero derivation.) We give partial results towards the conjecture. |
Databáze: | arXiv |
Externí odkaz: |