Local smooth solutions of the nonlinear Klein-gordon equation

Autor: Cazenave, Thierry, Naumkin, Ivan
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
DOI: 10.3934/dcdss.2020448
Popis: Given any $\mu_1, \mu_2\in {\mathbb C}$ and $\alpha >0$, we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation $\partial_{ tt } u - \Delta u + \mu_1 u = \mu_2 |u|^\alpha u$ on ${\mathbb R}^N$, $N\ge 1$, that do not vanish, i.e. $ |u (t,x) | >0 $ for all $x \in {\mathbb R}^N$ and all sufficiently small $t$. We write the equation in the form of a first-order system associated with a pseudo-differential operator, then use a method adapted from~[Commun. Contemp. Math. {\bf 19} (2017), no. 2, 1650038]. We also apply a similar (but simpler than in the case of the Klein-Gordon equation) argument to prove an analogous result for a class of nonlinear Dirac equations.
Databáze: arXiv