Random walk through a fertile site

Autor: Bauer, Michel, Krapivsky, P. L., Mallick, Kirone
Rok vydání: 2019
Předmět:
Zdroj: Phys. Rev. E 103, 022114 (2021)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevE.103.022114
Popis: We study the dynamics of random walks hopping on homogeneous hyper-cubic lattices and multiplying at a fertile site. In one and two dimensions, the total number $\mathcal{N}(t)$ of walkers grows exponentially at a Malthusian rate depending on the dimensionality and the multiplication rate $\mu$ at the fertile site. When $d>d_c=2$, the number of walkers may remain finite forever for any $\mu$; it surely remains finite when $\mu\leq \mu_d$. We determine $\mu_d$ and show that $\langle\mathcal{N}(t)\rangle$ grows exponentially if $\mu>\mu_d$. The distribution of the total number of walkers remains broad when $d\leq 2$, and also when $d>2$ and $\mu>\mu_d$. We compute $\langle \mathcal{N}^m\rangle$ explicitly for small $m$, and show how to determine higher moments. In the critical regime, $\langle \mathcal{N}\rangle$ grows as $\sqrt{t}$ for $d=3$, $t/\ln t$ for $d=4$, and $t$ for $d>4$. Higher moments grow anomalously, $\langle \mathcal{N}^m\rangle\sim \langle \mathcal{N}\rangle^{2m-1}$, in the critical regime; the growth is normal, $\langle \mathcal{N}^m\rangle\sim \langle \mathcal{N}\rangle^{m}$, in the exponential phase. The distribution of the number of walkers in the critical regime is asymptotically stationary and universal, viz. it is independent of the spatial dimension. Interactions between walkers may drastically change the behavior. For random walks with exclusion, if $d>2$, there is again a critical multiplication rate, above which $\langle\mathcal{N}(t)\rangle$ grows linearly (not exponentially) in time; when $d\leq d_c=2$, the leading behavior is independent on $\mu$ and $\langle\mathcal{N}(t)\rangle$ exhibits a sub-linear growth.
Comment: 23 pages, 6 figures
Databáze: arXiv