Generalized Drazin-Riesz Invertibility for Operators Matrices

Autor: Tajmouati, Abdelaziz, Karmouni, Mohammed, Chrifi, Safae Alaoui
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Let $A\in\mathcal{B}(X)$, $B\in\mathcal{B}(Y)$ and $C\in\mathcal{B}(Y,X)$ where $X$ and $Y$ are infinite Banach or Hilbert spaces. Let $M_{C}=\begin{pmatrix} A & C\cr 0 & B \end{pmatrix}$ be $2\times 2$ upper triangular operator matrix acting on $X\oplus Y$. In this paper, we consider some necessary and sufficient conditions for $M_{C}$ to be generalized Drazin-Riesz invertible. Furthermore, the set $\bigcap_{C\in \mathcal{B}(Y,X)}\sigma_{gDR}(M_{C})$ will be investigated and their relation between $\bigcap_{C\in \mathcal{B}(Y,X)}\sigma_{b}(M_{C})$ will be studied, where $\sigma_{gDR}(M_{C})$ and $\sigma_{b}(M_{C})$ denote the generalized Drazin-Riesz spectrum and the Browder spectrum, respectively.
Databáze: arXiv