Unital locally matrix algebras and Steinitz numbers

Autor: Bezushchak, Oksana, Oliynyk, Bogdana
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: An $F$-algebra $A$ with unit $1$ is said to be a locally matrix algebra if an arbitrary finite collection of elements $a_1,$ $\ldots,$ $a_s $ from $ A$ lies in a subalgebra $B$ with $1$ of the algebra $A$, that is isomorphic to a matrix algebra $M_n(F),$ $n\geq 1.$ To an arbitrary unital locally matrix algebra $A$ we assign a Steinitz number $\mathbf{n}(A)$ and study a relationship between $\mathbf{n}(A)$ and $A$.
Databáze: arXiv