Non-real eigenvalues of the Harmonic Oscillator perturbed by an odd, two-point $\delta$-potential
Autor: | Baker, Charles, Mityagin, Boris |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | J. Math. Phys 61 (2020), art. no. 043505 |
Druh dokumentu: | Working Paper |
DOI: | 10.1063/1.5139901 |
Popis: | In this paper, we consider the perturbations of the Harmonic Oscillator Operator by an odd pair of point interactions: $z (\delta(x - b) - \delta(x + b))$. We study the spectrum by analyzing a convenient formula for the eigenvalue. We conclude that if $z = ir$, $r$ real, as $r \to \infty$, the number of non-real eigenvalues tends to infinity. Comment: 26 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |