Non-real eigenvalues of the Harmonic Oscillator perturbed by an odd, two-point $\delta$-potential

Autor: Baker, Charles, Mityagin, Boris
Rok vydání: 2019
Předmět:
Zdroj: J. Math. Phys 61 (2020), art. no. 043505
Druh dokumentu: Working Paper
DOI: 10.1063/1.5139901
Popis: In this paper, we consider the perturbations of the Harmonic Oscillator Operator by an odd pair of point interactions: $z (\delta(x - b) - \delta(x + b))$. We study the spectrum by analyzing a convenient formula for the eigenvalue. We conclude that if $z = ir$, $r$ real, as $r \to \infty$, the number of non-real eigenvalues tends to infinity.
Comment: 26 pages, 2 figures
Databáze: arXiv