Some estimates of precision of the Huygens approximation
Autor: | Malesevic, Branko, Nenezic, Marija, Zhu, Ling, Banjac, Bojan |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper are given some estimates of precision of the Huygens approximation $x \approx \frac{2}{3} \sin x + \frac{1}{3} \tan x,$ for right neighbourhood of zero, by determining some boundaries for the Huygens function $f(x) = \frac{2}{3} \sin x + \frac{1}{3} \tan x,$ for $x \in \left(0, \frac{\pi}{2} \right)$, in forms of some polynomial and some rational functions. Comment: This article is included in one new extended article B. Malesevic, M. Nenezic, L. Zhu, B. Banjac, M. Petrovic: Some new estimates of precision of Cusa-Huygens and Huygens approximations (arXiv:1907.00712) |
Databáze: | arXiv |
Externí odkaz: |