Involutions on Incidence Algebras of Finite Posets
Autor: | Gargate, Ivan, Gargate, Michael |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give various formulas to compute the number of all involutions, i.e. elements of order 2, in an incidence algebra $I(X,\mathbb{K})$, where $X$ is a finite poset (star, Y and Rhombuses) and $\mathbb{K}$ is a finite field of characteristic different from 2. Using the techniques describing here we show an algorithm to calculate the number of involutions on any finite poset. Comment: 27 pages, 7 figures |
Databáze: | arXiv |
Externí odkaz: |