Involutions on Incidence Algebras of Finite Posets

Autor: Gargate, Ivan, Gargate, Michael
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We give various formulas to compute the number of all involutions, i.e. elements of order 2, in an incidence algebra $I(X,\mathbb{K})$, where $X$ is a finite poset (star, Y and Rhombuses) and $\mathbb{K}$ is a finite field of characteristic different from 2. Using the techniques describing here we show an algorithm to calculate the number of involutions on any finite poset.
Comment: 27 pages, 7 figures
Databáze: arXiv