Characterising random partitions by random colouring

Autor: Björnberg, Jakob E., Mailler, Cécile, Mörters, Peter, Ueltschi, Daniel
Rok vydání: 2019
Předmět:
Zdroj: Electron. Commun. Probab. 25, paper no. 4, 1-12 (2020)
Druh dokumentu: Working Paper
DOI: 10.1214/19-ECP283
Popis: Let $(X_1,X_2,...)$ be a random partition of the unit interval $[0,1]$, i.e. $X_i\geq0$ and $\sum_{i\geq1} X_i=1$, and let $(\varepsilon_1,\varepsilon_2,...)$ be i.i.d. Bernoulli random variables of parameter $p \in (0,1)$. The Bernoulli convolution of the partition is the random variable $Z =\sum_{i\geq1} \varepsilon_i X_i$. The question addressed in this article is: Knowing the distribution of $Z$ for some fixed $p\in(0,1)$, what can we infer about the random partition? We consider random partitions formed by residual allocation and prove that their distributions are fully characterised by their Bernoulli convolution if and only if the parameter $p$ is not equal to $1/2$.
Comment: 12 pages
Databáze: arXiv