Integer Laplacian Eigenvalues of Chordal Graphs

Autor: de Abreu, Nair Maria Maia, Justel, Claudia Marcela, Markenzon, Lilian
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, structural properties of chordal graphs are analysed, in order to establish a relationship between these structures and integer Laplacian eigenvalues. We present the characterization of chordal graphs with equal vertex and algebraic connectivities, by means of the vertices that compose the minimal vertex separators of the graph; we stablish a sufficient condition for the cardinality of a maximal clique to appear as an integer Laplacian eigenvalue. Finally, we review two subclasses of chordal graphs, showing for them some new properties.
Comment: 15 pages, 5 figures
Databáze: arXiv