Kissing number in hyperbolic space
Autor: | Dostert, Maria, Kolpakov, Alexander |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in $\mathbb{H}^n$, for $n\geq 2$. For that purpose, the kissing number is replaced by the kissing function $\kappa(n, r)$ which depends on the radius $r$. After we obtain some theoretical lower and upper bounds for $\kappa(n, r)$, we study their asymptotic behaviour and show, in particular, that $\lim_{r\to \infty} \frac{\log \kappa(n,r)}{r} = n-1$. Finally, we compare them with the numeric upper bounds obtained by solving a suitable semidefinite program. Comment: Will be merged with arXiv:1910.02715 |
Databáze: | arXiv |
Externí odkaz: |