Singular solutions of elliptic equations with iterated exponentials
Autor: | Ghergu, Marius, Goubet, Olivier |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct positive singular solutions for the problem $-\Delta u=\lambda \exp (e^u)$ in $B_1\subset \mathbb{R}^n$ ($n\geq 3$), $u=0$ on $\partial B_1$, having a prescribed behaviour around the origin. Our study extends the one in Y. Miyamoto [Y. Miyamoto, A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth. J. Differential Equations \textbf{264} (2018), 2684--2707] for such nonlinearities. Our approach is then carried out to elliptic equations featuring iterated exponentials. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |