Distributive biracks and solutions of the Yang-Baxter equation
Autor: | Jedlička, Přemysl, Pilitowska, Agata, Zamojska-Dzienio, Anna |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Internat.J.Algebra Comput. 30 (2020), 667-683 |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0218196720500150 |
Popis: | We investigate a class of non-involutive solutions of the Yang-Baxter equation which generalize self-distributive (derived) solutions. In particular, we study generalized multipermutation solutions in this class. We show that the Yang-Baxter (permutation) groups of such solutions are nilpotent. We formulate the results in the language of biracks. Comment: Previous title was "Multipermutation distributive solutions of Yang-Baxter equation have nilpotent permutation groups" |
Databáze: | arXiv |
Externí odkaz: |