Distributive biracks and solutions of the Yang-Baxter equation

Autor: Jedlička, Přemysl, Pilitowska, Agata, Zamojska-Dzienio, Anna
Rok vydání: 2019
Předmět:
Zdroj: Internat.J.Algebra Comput. 30 (2020), 667-683
Druh dokumentu: Working Paper
DOI: 10.1142/S0218196720500150
Popis: We investigate a class of non-involutive solutions of the Yang-Baxter equation which generalize self-distributive (derived) solutions. In particular, we study generalized multipermutation solutions in this class. We show that the Yang-Baxter (permutation) groups of such solutions are nilpotent. We formulate the results in the language of biracks.
Comment: Previous title was "Multipermutation distributive solutions of Yang-Baxter equation have nilpotent permutation groups"
Databáze: arXiv