Reductivity of the automorphism group of K-polystable Fano varieties
Autor: | Alper, Jarod, Blum, Harold, Halpern-Leistner, Daniel, Xu, Chenyang |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00222-020-00987-2 |
Popis: | We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and $\Theta$-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space. Comment: 32 pages. Final version. To appear in Inventiones Math |
Databáze: | arXiv |
Externí odkaz: |