Autor: |
della Sala, Giuseppe, Lamel, Bernhard, Reiter, Michael |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.4310/AJM.2021.v25.n5.a3 |
Popis: |
We study the deformation theory of CR maps in the positive codimensional case. In particular, we study structural properties of the {\em mapping locus} $E$ of (germs of nondegenerate) holomorphic maps $H \colon (M,p) \to M'$ between generic real submanifolds $M \subset \mathbb C^N$ and $M' \subset \mathbb C^{N'}$, defined to be the set of points $p' \in M'$ which admit such a map with $H(p) = p'$. We show that this set $E$ is semi-analytic and provide examples for which $E$ posseses (prescribed) singularities. |
Databáze: |
arXiv |
Externí odkaz: |
|