Embedding topological spaces into Hausdorff $\kappa$-bounded spaces
Autor: | Banakh, T., Bardyla, S., Ravsky, A. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\kappa$ be an infinite cardinal. A topological space $X$ is $\kappa$-bounded if the closure of any subset of cardinality $\le\kappa$ in $X$ is compact. We discuss the problem of embeddability of topological spaces into Hausdorff (Urysohn, regular) $\kappa$-bounded spaces, and present a canonical construction of such an embedding. Also we construct a (consistent) example of a sequentially compact separable regular space that cannot be embedded into a Hausdorff $\omega$-bounded space. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |