Embedding topological spaces into Hausdorff $\kappa$-bounded spaces

Autor: Banakh, T., Bardyla, S., Ravsky, A.
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\kappa$ be an infinite cardinal. A topological space $X$ is $\kappa$-bounded if the closure of any subset of cardinality $\le\kappa$ in $X$ is compact. We discuss the problem of embeddability of topological spaces into Hausdorff (Urysohn, regular) $\kappa$-bounded spaces, and present a canonical construction of such an embedding. Also we construct a (consistent) example of a sequentially compact separable regular space that cannot be embedded into a Hausdorff $\omega$-bounded space.
Comment: 11 pages
Databáze: arXiv