Bishop-Phelps-Bollob\'as property for positive operators between classical Banach spaces
Autor: | Acosta, María D., Soleimani-Mourchehkhorti, Maryam |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | The Mathematical Legacy of Victor Lomonosov: Operator Theory, R. M. Aron, E. A. Gallardo, M. Mart\'in, Dmitry Ryabogin, I. M. Spitkovsky and Artem Zvavitch (Eds.), De Gruyter, 2020, pp. 1-14 |
Druh dokumentu: | Working Paper |
DOI: | 10.1515/9783110656756 |
Popis: | We prove that the class of positive operators from $L_\infty (\mu)$ to $L_1 (\nu)$ has the Bishop-Phelps-Bollob\'as property for any positive measures $\mu$ and $\nu$. The same result also holds for the pair $(c_0, \ell_1)$. We also provide an example showing that not every pair of Banach lattices satisfies the Bishop-Phelps-Bollob\'as property for positive operators. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |