A note on crossed products of rotation algebras
Autor: | Bönicke, Christian, Chakraborty, Sayan, He, Zhuofeng, Liao, Hung-Chang |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We compute the $K$-theory of crossed products of rotation algebras $\mathcal{A}_\theta$, for any real angle $\theta$, by matrices in $\mathrm{SL}(2,\mathbb{Z})$ with infinite order. Using techniques of continuous fields, we show that the canonical inclusion of $\mathcal{A}_\theta$ into the crossed products is injective at the level of $K_0$-groups. We then give an explicit set of generators for the $K_0$-groups and compute the tracial ranges concretely. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |