Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data

Autor: Bartolucci, Daniele, Jevnikar, Aleks, Lee, Youngae, Yang, Wen
Rok vydání: 2019
Předmět:
Zdroj: J. Diff. Eq. 269 (2020), no. 3, 2057-2090
Druh dokumentu: Working Paper
DOI: 10.1016/j.jde.2020.01.030
Popis: We are concerned with the mean field equation with singular data on bounded domains. Under suitable non-degeneracy conditions we prove local uniqueness and non-degeneracy of bubbling solutions blowing up at singular points. The proof is based on sharp estimates for bubbling solutions of singular mean field equations and suitably defined Pohozaev-type identities.
Databáze: arXiv