A Cauchy problem for minimal spacelike surfaces in $\mathbb{R}^4_2$
Autor: | Lymberopoulos, Alexandre, Filho, Antonio de Padua Franco, Montalvo, Anuar Enrique Paternina |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give a definition of isoclinic parametric surfaces in $\mathbb{R}^4_2$ and prove that such an isoclinic conformal immersion comes from two holomorphic functions. A Cauchy problem was proposed and solved, namely: construct an isoclinic and minimal positive (negative) spacelike surface in $\mathbb{R}^4_2$, containing a given positive (negative) real analytic curve. At last, we study the important and well-known Bj\"orling problem, providing some examples was given in the last section. Comment: 24 pages |
Databáze: | arXiv |
Externí odkaz: |