Holographic integral geometry with time dependence
Autor: | Czech, Bartlomiej, Olivas, Yaithd D., Wang, Zi-zhi |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/JHEP12(2020)063 |
Popis: | We write down Crofton formulas--expressions that compute lengths of spacelike curves in asymptotically AdS$_3$ geometries as integrals over kinematic space--which apply when the curve and/or the background spacetime is time-dependent. Relative to their static predecessor, the time-dependent Crofton formulas display several new features, whose origin is the local null rotation symmetry of the bulk geometry. In pure AdS$_3$ where null rotations are global symmetries, the Crofton formulas simplify and become integrals over the null planes, which intersect the bulk curve. Comment: 21 pages plus references, 6 figures |
Databáze: | arXiv |
Externí odkaz: |