On the Moduli Space of Null Curves in Klein's Quadric
Autor: | Michelat, Alexis |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the moduli space of null curves in Klein's quartic in the four-dimensional (complex) projective plane using methods developed by Robert Bryant. As a consequence, we show that minimal surfaces with $9$ embedded planar ends do not exist and formulate some conjectures about the previous moduli space. Comment: 25 pages |
Databáze: | arXiv |
Externí odkaz: |