Effective counting of simple closed geodesics on hyperbolic surfaces
Autor: | Eskin, Alex, Mirzakhani, Maryam, Mohammadi, Amir |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm\"{u}ller geodesic flow. Comment: 50 pages |
Databáze: | arXiv |
Externí odkaz: |