Effective counting of simple closed geodesics on hyperbolic surfaces

Autor: Eskin, Alex, Mirzakhani, Maryam, Mohammadi, Amir
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm\"{u}ller geodesic flow.
Comment: 50 pages
Databáze: arXiv