Autor: |
Galindo, Carlos, Monserrat, Francisco, Moreno-Ávila, Carlos-Jesús |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Quaestiones Mathematicae. Volume 46, Issue 11, pages 2367-2401 (2023) |
Druh dokumentu: |
Working Paper |
DOI: |
10.2989/16073606.2022.2146020 |
Popis: |
We consider flags $E_\bullet=\{X\supset E\supset \{q\}\}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $\nu_E$ of a Hirzebruch surface $\mathbb{F}_\delta$ and $X$ the surface given by $\nu_E,$ and determine an analogue of the Seshadri constant for pairs $(\nu_E,D)$, $D$ being a big divisor on $\mathbb{F}_\delta$. The main result is an explicit computation of the vertices of the Newton-Okounkov bodies of pairs $(E_\bullet,D)$ as above, showing that they are quadrilaterals or triangles and distinguishing one case from another. |
Databáze: |
arXiv |
Externí odkaz: |
|