Seshadri-type constants and Newton-Okounkov bodies for non-positive at infinity valuations of Hirzebruch surfaces

Autor: Galindo, Carlos, Monserrat, Francisco, Moreno-Ávila, Carlos-Jesús
Rok vydání: 2019
Předmět:
Zdroj: Quaestiones Mathematicae. Volume 46, Issue 11, pages 2367-2401 (2023)
Druh dokumentu: Working Paper
DOI: 10.2989/16073606.2022.2146020
Popis: We consider flags $E_\bullet=\{X\supset E\supset \{q\}\}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $\nu_E$ of a Hirzebruch surface $\mathbb{F}_\delta$ and $X$ the surface given by $\nu_E,$ and determine an analogue of the Seshadri constant for pairs $(\nu_E,D)$, $D$ being a big divisor on $\mathbb{F}_\delta$. The main result is an explicit computation of the vertices of the Newton-Okounkov bodies of pairs $(E_\bullet,D)$ as above, showing that they are quadrilaterals or triangles and distinguishing one case from another.
Databáze: arXiv