Locally $C^{1,1}$ convex extensions of $1$-jets
Autor: | Azagra, Daniel |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $E$ be an arbitrary subset of $\mathbb{R}^n$, and $f:E\to\mathbb{R}$, $G:E\to\mathbb{R}^n$ be given functions. We provide necessary and sufficient conditions for the existence of a convex function $F\in C^{1,1}_{\textrm{loc}}(\mathbb{R}^n)$ such that $F=f$ and $\nabla F=G$ on $E$. We give a useful explicit formula for such an extension $F$, and a variant of our main result for the class $C^{1, \omega}_{\textrm{loc}}$, where $\omega$ is a modulus of continuity. We also present two applications of these results, concerning how to find $C^{1,1}_{\textrm{loc}}$ convex hypersurfaces with prescribed tangent hyperplanes on a given subset of $\mathbb{R}^n$, and some explicit formulas for (not necessarily convex) $C^{1,1}_{\textrm{loc}}$ extensions of $1$-jets. Comment: I corrected some misprints and updated a reference |
Databáze: | arXiv |
Externí odkaz: |