Lie subalgebras of Differential Operators in one Variable
Autor: | Martin, Francisco J. Plaza, Prieto, Carlos Tejero |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\operatorname{Witt}$ be the Lie algebra generated by the set $\{L_i\,\vert\, i \in {\mathbb Z}\}$ and $\operatorname{Vir}$ its universal central extension. Let $\operatorname{Diff}(V)$ be the Lie algebra of differential operators on $V=\mathbb{C}[[z]]$, $\mathbb{C}((z))$ or $V=\mathbb{C}(z)$. We explicitly describe all Lie algebra homomorphisms from $\mathfrak{sl}(2)$, $\operatorname{Witt}$ and $\operatorname{Vir}$ to $\operatorname{Diff}(V)$ such that $L_0$ acts on $V$ as a first order differential operator. Comment: To appear in the Mediterranean Journal of Mathematics, Vol. 16 (2019), issue no. 6 |
Databáze: | arXiv |
Externí odkaz: |