On the existence of admissible supersingular representations of $p$-adic reductive groups
Autor: | Herzig, Florian, Koziol, Karol, Vignéras, Marie-France |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Forum Math. Sigma 8 (2020), e2, 73 pp |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/fms.2019.50 |
Popis: | Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_p$, and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$. Comment: 58 pages, with an appendix by Sug Woo Shin. This replaces arXiv:1712.10142 and arXiv:1808.08255. v2: Minor changes following referee report; to appear in Forum Math. Sigma |
Databáze: | arXiv |
Externí odkaz: |