Complex time, shredded propagator method for large-scale GW calculations
Autor: | Kim, Minjung, Martyna, Glenn J., Ismail-Beigi, Sohrab |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevB.101.035139 |
Popis: | The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not routinely applied to large complex assemblies due to its large computational overhead and quartic scaling with particle number. Here, the GW equations are recast, exactly, as Fourier-Laplace time integrals over complex time propagators. The propagators are then "shredded" via energy partitioning and the time integrals approximated in a controlled manner using generalized Gaussian quadrature(s) while discrete variable methods are employed to represent the required propagators in real-space. The resulting cubic scaling GW method has a sufficiently small prefactor to outperform standard quartic scaling methods on small systems ($\gtrapprox$ 10 atoms) and also represents a substantial improvement over other cubic methods tested for all system sizes studied. The approach can be applied to any theoretical framework containing large sums of terms with energy differences in the denominator. Comment: 24 pages, 18 figures |
Databáze: | arXiv |
Externí odkaz: |